
Leveraging Network Optimizations to
Improve Distributed Transaction Processing

Performance

PAGE 1

Xu Cui, Michael Mior, Bernard Wong,
Khuzaima Daudjee, Sajjad Rizvi

NetStore

ACTIVE Workshop @ Middleware 2017
Las Vegas, NV, USA
December 12, 2017

A tremendous amount of data is
generated and stored in the cloud

PAGE 2

image sources:
smartbear, appian, imarticus

A distributed query

PAGE 3

Part of the network is congested

PAGE 4

A flow scheduler can solve this

PAGE 5

If the green flows are short-lived flows

PAGE 6

A flow scheduler cannot detect the
transient congestion

PAGE 7

The transaction query may be routed on
the congested paths

PAGE 8

NetStore

▪ A transaction processing system co-designed
with the network enables two network-aware
optimizations

➢ Least bottlenecked path (LBP): a dynamic flow
scheduler that leverages information gathered from a
transaction manager

➢ Network-aware caching (NAC): a database
caching optimization that makes caching decisions
based on the network topology

PAGE 9

Standard database architecture

PAGE 10

The NetStore controller extends the transaction
manager with a network manager

PAGE 11

Least bottlenecked path (LBP)

▪ The database and network co-design enables
NetStore to maintain a global view of the
network

▪ LBP uses this dynamic flow information to
approximate the bandwidth allocation for
each new flow

▪ LBP routes the new flow through the best
path

PAGE 12

LBP can detect the transient network
congestion caused by short-lived flows

PAGE 13

LBP selects the best path for each
transaction flow

PAGE 14

NetStore configures network paths when
the system bootstraps

PAGE 15

Benefits of least bottlenecked path

▪ Makes informed routing decisions based on
the dynamic flow information gathered from
the transaction manager

▪ Balances the network load for short-lived
transactional flows when transient network
congestion is present

PAGE 16

Network-aware caching (NAC)

▪ The co-design enables network-aware
caching

▪ NAC leverages cache replicas to reduce the
load on the network

▪ NAC avoids cache invalidations which can
increase the network load

PAGE 17

DataServer 2 performs a read query on
Alice

PAGE 18

The NetStore controller maintains a
cache index of the cache entries

19

Key DataServer
IDs

Cache
Version #

The NetStore controller creates a
version number for each cache entry

20

Key DataServer
IDs

Cache
Version #

Alice 2 1

DataServer 2 fetches Alice from
DataServer 3

PAGE 21

DataServer 2 stores the cache replica
and the version number locally

PAGE 22

DataServer 1 performs a read operation
on Alice

PAGE 23

The NetStore controller determines the
best cache replica location for this op

24

Key DataServer
IDs

Cache
Version #

Alice 2 1

The NetStore controller adds server id
1 to Alice’s cache index

25

Key DataServer
IDs

Cache
Version #

Alice 2 => 2, 1 1

DataServer 1 fetches the data from
DataServer 2

PAGE 26

DataServer 1 stores the result in its local
cache

PAGE 27

A write operation is performed on Alice

PAGE 28

The NetStore controller erases Alice

29

Key DataServer
IDs

Cache
Version #

Alice 2, 1 1

A new version number is generated
when another read operation happens

30

Key DataServer
IDs

Cache
Version #

Alice 1 2

Benefits of network-aware caching

▪ Augments a database optimization with
network-awareness

▪ Reduces the load on the network
▪ Avoids cache invalidations
▪ Performs batch-processing to further

improve performance

PAGE 31

Experimental setup

▪ We use Mininet to build a distributed virtual
multi-rooted tree network
▪ 64 virtual servers
▪ Each virtual server runs a transaction

client, a transaction server, a background
client and a background server
▪ 1 Gbps capacity on each link

PAGE 32

Experimental setup

▪ The controller runs on a dedicated machine
▪ We use a synthetic workload that performs

read and write operations
▪ The key selection process follows a Zipfian

distribution with a distribution constant of
0.99

▪ We use ECMP as a baseline for comparison

PAGE 33

Experimental setup: default system
parameters

34

ECMP vs NetStore: varying the size of
background flows

35

ECMP vs NetStore: varying number of
operations in transactions

36

Conclusion
▪ We made the case for co-designing cloud

applications with network optimizations to
improve performance

▪ NetStore is distributed transaction
processing system that offers network-aware
optimizations

▪ NetStore significantly reduces average
transaction completion time when parts of
the network are saturated

PAGE 37

PAGE 38

Thank you.
Contact: xcui@uwaterloo.ca

