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A tremendous amount of data is 
generated and stored in the cloud
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A distributed query
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Part of the network is congested
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A flow scheduler can solve this
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If the green flows are short-lived flows
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A flow scheduler cannot detect the 
transient congestion
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The transaction query may be routed on 
the congested paths
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NetStore

▪ A transaction processing system co-designed 
with the network enables two network-aware 
optimizations

➢ Least bottlenecked path (LBP): a dynamic flow 
scheduler that leverages information gathered from a 
transaction manager

➢ Network-aware caching (NAC): a database 
caching optimization that makes caching decisions 
based on the network topology
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Standard database architecture
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The NetStore controller extends the transaction 
manager with a network manager
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Least bottlenecked path (LBP)

▪ The database and network co-design enables 
NetStore to maintain a global view of the 
network

▪ LBP uses this dynamic flow information to 
approximate the bandwidth allocation for 
each new flow

▪ LBP routes the new flow through the best 
path
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LBP can detect the transient network 
congestion caused by short-lived flows
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LBP selects the best path for each 
transaction flow
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NetStore configures network paths when 
the system bootstraps
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Benefits of least bottlenecked path

▪ Makes informed routing decisions based on 
the dynamic flow information gathered from 
the transaction manager

▪ Balances the network load for short-lived 
transactional flows when transient network 
congestion is present
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Network-aware caching (NAC)

▪ The co-design enables network-aware 
caching

▪ NAC leverages cache replicas to reduce the 
load on the network

▪ NAC avoids cache invalidations which can 
increase the network load
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DataServer 2 performs a read query on 
Alice
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The NetStore controller maintains a 
cache index of the cache entries
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The NetStore controller creates a 
version number for each cache entry
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DataServer 2 fetches Alice from 
DataServer 3
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DataServer 2 stores the cache replica 
and the version number locally
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DataServer 1 performs a read operation 
on Alice
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The NetStore controller determines the 
best cache replica location for this op
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The NetStore controller adds server id 
1 to Alice’s cache index
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DataServer 1 fetches the data from 
DataServer 2
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DataServer 1 stores the result in its local 
cache
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A write operation is performed on Alice
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The NetStore controller erases Alice
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A new version number is generated 
when another read operation happens
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Benefits of network-aware caching

▪ Augments a database optimization with 
network-awareness

▪ Reduces the load on the network
▪ Avoids cache invalidations
▪ Performs batch-processing to further 

improve performance
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Experimental setup

▪ We use Mininet to build a distributed virtual 
multi-rooted tree network
▪ 64 virtual servers
▪ Each virtual server runs a transaction 

client, a transaction server, a background 
client and a background server
▪ 1 Gbps capacity on each link
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Experimental setup

▪ The controller runs on a dedicated machine
▪ We use a synthetic workload that performs 

read and write operations
▪ The key selection process follows a Zipfian 

distribution with a distribution constant of 
0.99 

▪ We use ECMP as a baseline for comparison
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Experimental setup: default system 
parameters
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ECMP vs NetStore: varying the size of 
background flows
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ECMP vs NetStore: varying number of 
operations in transactions
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Conclusion
▪ We made the case for co-designing cloud 

applications with network optimizations to 
improve performance

▪ NetStore is distributed transaction 
processing system that offers network-aware 
optimizations

▪ NetStore significantly reduces average 
transaction completion time when parts of 
the network are saturated
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Thank you.
Contact: xcui@uwaterloo.ca


