Declarative query processing in imperative managed runtimes

Stratis D. Viglas

Google, US & School of Informatics, University of Edinburgh, UK
sviglas@google.com

Active/HardBD 2017
Multi-tier applications

application logic

data structures

volatile memory heap

(managed) runtime

serialization protocol

SQL

secondary storage
What’s changing?

- Application logic
- Data structures
- Volatile memory heap
- Serialization protocol
- Secondary storage

SQL
What’s changing?

application logic

data structures

persistent
memory heap

(managed) runtime

serialization protocol

secondary storage

SQL
In this talk

- Code generation for just-in-time query compilation
 - Starting from compiling SQL to C
 - Moving on to managed runtimes and language-integrated queries

- Write-limited algorithms for persistent memory
 - Staging algorithms for query processing
 - API to enable dynamic optimization
 - A runtime to support the API
Part I

Just-in-time code generation for query processing
Database systems architecture

- Roughly decomposed into four main building blocks
 - Query engine
 - Storage manager
 - Transaction manager
 - Recovery manager

- Relatively orthogonal aspects
 - Improvements in one block improve the system overall
 - Or, at least, we try to abide by that rule
Zooming in to query processing

- Queries go through a sequence of transformations
 - Parsing
 - SQL to abstract syntax tree (AST)
 - Rewriting
 - AST to logical plan
 - Potentially more than one rewriting passes
 - Optimization
 - Logical plan to physical plan
- Interpretation-based approach
 - Query engine interprets the query plan to produce results
Holistic techniques

• Template-inspired approach
 – Languages like C++ generate type-specific code in their standard library
 – Reduces bloat of generic implementations
 – Operators are templated and instantiated per query

• At the same time, look at the query holistically
 – Collapse operations when possible
 – Generate type-specific code
 – Eliminate function calls apart from the necessary
 – Source to source transformation: from SQL to C

• Leave orthogonal aspects of the system unaffected

• Treat SQL truly as a managed runtime with just-in-time compilation capability
HIQUE – the Holistic Integrated Query Engine

frontend

query

results

executor

pages

executor

bufferpool

storage manager

preparator

schemas

statistics

types

parser

AST

optimizer

plan

generator

compiler

binary

linker

library file

evaluator

DB tables

catalog

DB tables

catalog
Example generated code

/* Inlined code to stage inputs */

hash: /* examine corresponding partitions together */

for (k = 0; k < M; k++) {
 /* algorithm bookkeeping */
 /* loop over pages */
 for (p_1 = start_page_1; p_1 <= end_page_1; p_1++) {
 for (p_2 = start_page_2; p_2 <= end_page_2; p_2++) {
 page_struct *page_1 = read_page(p_1, partition_1[k]);
 page_struct *page_2 = read_page(p_2, partition_2[k]);
 ...
 for (p_m = start_page_m; p_m <= end_page_m; p_m++) {
 page_struct *page_m = read_page(p_m, partition_m[k]);
 /* for each page loop over tuples in the page */
 for (t_1 = 1; t_1 <= page_1->num_tuples; t_1++) {
 void *tuple_1 = page_1->data + t_1 * tuple_size_1;
 for (t_2 = 1; t_2 <= page_2->num_tuples; t_2++) {
 void *tuple_2 = page_2->data + t_2 * tuple_size_2;
 int *t1 = tuple_1 + offset_1;
 int *t2 = tuple_2 + offset_2;
 if (*t1 != *t2) {
 merge: /* update bounds for all loops */
 continue;
 }
 ...
 }
 }
 }
 }
 }
}
Language-integrated query (C#)
LINQ-to-objects in more detail

```csharp
List<Order> orders = new List<Order>();

// Add data elements to order

var qry_stmt = orders
    .Where(o => o.orderdate > new DateTime(1/1/1999))
    .Select(o => o.price * (1 - o.discount));

foreach (var r in qry_stmt) {
    // Consume query result
}
```

query statement declaration

query execution
Standard execution

```csharp
IEnumerable<T> Where<T>(
    this IEnumerable<T> src,
    Func<T, bool> pred {
        foreach (T s in src) {
            if (pred(s))
                yield return s;
        }
    }
)
```

- Virtual function calls to propagate objects through pipeline
- Lambda expression calls to allow generic implementations
- Compiler cannot inline because target not known at compile time
Query compilation

- Dynamically compile queries at run-time
 - Single, specialized operator that evaluates the entire query

```csharp
IEnumerable<decimal> Query(List<Order> src) {
    foreach (Order s in src) {
        if (s.orderdate > new DateTime(1/1/1999))
            yield return (s.price * (1 - s.discount));
    }
}
```
Compilation architecture

- Query compiler is implemented as a LINQ query provider

Diagram:

- Definition of standard query operators
- Compiled query operator
- Query tree
- Code tree
- C#/C code
- Query cache
- DLL

Diagram flow:
- Definition of standard query operators to compiled query operator
- Query tree to code tree to C#/C code
- Query cache and DLL integration
The bad news

- Basic approach is limited by performance of C#

- Relies on (cache) inefficient memory layout dictated by garbage collection
Planning ahead

• Preferably we would like to perform query processing in native C code and have control over data layout
 – Not possible to access managed objects in C
 – Not possible to control data layout of objects

• But: structs are value types (in C#) and, hence
 – Are not managed by garbage collector
 – Allow some control over data layout
Adding more C into C#

- Represent dataset as arrays of structs

- Dual operator approach:
 - C# operator interacts with application code by returning query result
 - C operator processes query on arrays of structs
Staged query processing (from C# to C and back)

- Store data as collections of objects

- Stage data in C# (as arrays of structs) and perform heavy-lifting of query in C on staged data

- Fall back to basic approach for simple operations
Staging in more detail

- Apply selections (fewer elements copied)
- Apply implicit projections (fewer fields copied)
- Flatten-out nested objects (removes references)
Indicative results over TPC-H
Part II

Write-limited algorithms for persistent memory
Properties of persistent memory

- Latency comparable to DRAM
 - But not DRAM
- Asymmetry: writes more expensive than reads (up to 15x)
 - Similar to flash memory; much faster overall, but more pronounced asymmetry
- Not a block device
 - Byte-addressable, behaves as memory
 - Potentially accessed through CPU loads and stores
 - Game-changing property
Incorporating persistent memory

- Persistent memory bridges the gap between disk and memory
 - Universal device, universal optimization objectives

- But how should it be treated?
 - As byte-addressable, albeit somewhat slower memory?
 - Or as block-addressable but faster persistent storage?
 - Neither? Both?

- What is the impact on system aspects?

This work
- Optimization of fundamental query processing algorithms and a runtime to support them
In more detail

• Design and implementation of persistent-memory-friendly algorithms for query processing
 – And a runtime to support them

• Focus on two fundamental operations
 – Sorting and join processing

• Why these two?
 – Well, we are doing databases after all!
 – But the goal is farther-reaching

• Write-limited algorithms
 – Trade writes for reads with tunable write-intensity
 – Guarantee when they outperform existing algorithms
General setup

• Overarching goal: trade writes for reads

• Persistent memory I/O takes place in cacheline-sized units (termed buffers)

• Under the assumption there is a ratio $\lambda = w/r$ where w is the write cost of the medium; r is the read cost; $\lambda > 1$

• Two general classes of algorithms
 – Split processing into a write-incurring and a write-limited part; or
 – Process lazily by performing extra reads and incur writes only when the accumulated read cost is too high
System overview

DRAM

runtime and algorithms

bufferpool

persistence layer

blocks

persistent collections
Limiting writes in sorting: segment sort

write-incurring mergesort on $x\%$

read-only selection sort on $(1-x)\%$

continuous extraction of next batch of minimum values
Limiting writes in join processing: lazy join

- Objective: process input one hash partition at a time
- Instead of scanning and materializing the partitioned input
 - Extract each partition by rescanning the entire input
 - Keep track of saved cost (by not writing) and penalty (by rescanning)
 - Materialize when cost exceeds savings
Runtime support: procrastination is bliss

• Each operator belongs to an operator context

• Express algorithms in terms of a common API
 – Record the workflow in a control flow graph

• Do not materialize any collection until it is accessed
 – Upon access, assess() it to see if it should be materialized
 – If collection is to be materialized, produce() it by walking the control flow graph
 – If not, go to the last materialized parent and apply recorded operations dynamically to produce
An API for recording algorithmic workflow

- split(T, n, T_l, T_h)
 - Split collection T at position n into T_l and T_h
- partition($T, h(), k, [T_i], [s_i] = |T|/k$)
 - Partition collection T into k partitions T_1 to T_k using $h()$ as the partitioning function
 - Size of each partition expected to be s_1 to s_k
 - Last argument optional and reverts to $|T|/k$
- filter($T, p(), f, T_p$)
 - Filter collection T into T_p using predicate $p()$
 - Output size expected to be $f|T|$ (where $f \in [0, 1]$)
- merge($T_l, T_r, m(), T$)
 - Merge collections T_l and T_r into T using $m()$ as the merging function
Example control flow graph

\[
\begin{align*}
T & \xrightarrow{\text{partition}} \left\{ \begin{array}{c}
T_0 \\
T_1 \\
V_0 \\
T_2 \\
V_1 \\
V_2
\end{array} \right. \\
V & \xrightarrow{\text{partition}} \left\{ \begin{array}{c}
T_0 \bowtie V_0 \\
T_1 \bowtie V_1 \\
T_2 \bowtie V_2 \\
S
\end{array} \right.
\end{align*}
\]
Optimizing the workflow

• Track accumulated numbers of cacheline reads and writes per materialized collection

• Use the sum to decide whether cheaper to keep subsequent collection deferred or materialize

• Trigger materialization using rules based on heuristics for access pattern detection
Implementation alternatives

• Four alternatives for incorporating persistent memory into the hierarchy

 – RAM disk: a full-blown file system running on top of main memory (with true file system overheads)

 – PMFS: a persistent memory file system, optimized for byte-addressable storage

 – Dynamic array: the typical collection one would use for expandable arrays when programming for main-memory

 – Blocked memory: an optimized blocked memory implementation of expandable arrays
Indicative results: sorting 1M records
Sorting 1M records: implementation alternatives
Summary

• Large memories mean that data processing will likely be memory-bound
 – No need for separate runtimes for application logic and data management
 – Data processed in the managed runtime, using language-integrated querying
 – *Just-in-time code generation for query processing*

• Memories not only large, but also non-volatile
 – With different performance characteristics
 – *Write-limited algorithms and a dynamic runtime to optimize performance*

• Management at all levels
 – Different applications require different representations for the same data
 – *Workload-driven dynamic data placement*
Acknowledgments

• Students
 - Konstantinos Krikellas
 - Ioannis Koltsidas
 - Vasilis Vasaitis
 - Fabian Nagel
 - Andreas Chatzistergiou
 - Arpit Joshi
 - Michail Basios
 - Matt Pugh
 - Chris Perivolaropoulos

• Collaborators
 - Gavin Bierman (Oracle)
 - Marcelo Cintra (Intel)
 - Aleksandar Dragojevic (MSR)
 - Boris Grot (UoE)
 - Vijay Nagarajan (UoE)
Summary

- Large memories means that data processing will likely be memory-bound
 - No need for separate runtimes for application logic and data management
 - Data processed in the managed runtime, using language-integrated querying
 - Just-in-time code generation for query processing

- Memories not only large, but also non-volatile
 - With different performance characteristics
 - Write-limited algorithms and a dynamic runtime to optimize performance

- Management at all levels
 - Different applications require different representations for the same data
 - Workload-driven dynamic data placement