
Processing declarative queries through
generating imperative code in managed runtimes

Stratis D. Viglas
Google, Inc. & University of Edinburgh, UK

sviglas@google.com

Abstract

We present the results of our work on integrating
database and programming language runtimes through
code generation and extensive just-in-time adaptation.
Our techniques deliver significant performance im-
provements over non-integrated solutions. Our work
makes important first steps towards a future where
data processing applications will commonly run on
machines that can store their datasets entirely in
persistent memory, and will be written in a single
programming language employing higher-level APIs
and language-integrated query.

1. Introduction

The falling price of main memory has led to the
development and growth of in-memory databases.
Whereas new advances in memory technology, like
persistent memory, make it possible to have a truly
universal storage model, accessed directly through the
programming language in the context of a fully man-
aged runtime. This environment is further enhanced
by language-integrated query, which has picked up
significant traction and has emerged as a generic, safe
method of combining programming languages with
databases for considerable benefits.

Our perspective on language-integrated query is that
it combines the runtime of a programming language
with that of a database system. This leads to the
question of how to tightly integrate these two runtimes.
Our proposal is to apply just-in-time code generation
and compilation techniques that have recently been
developed for general query processing. The idea is
that instead of compiling queries to query plans, which
are then interpreted, the system generates customized
native code that is then compiled and executed by
the query engine. At the same time, we must enable
the runtime to take advantage of advances in main
memory technology and, primarily, persistent memory.

Persistent memory is byte-addressable, but exhibits
asymmetric I/O: writes are typically one order of mag-
nitude more expensive than reads. Byte addressability
combined with I/O asymmetry render the performance
profile of persistent memory unique. Thus, it becomes
imperative to find new ways to seamlessly incorporate
it into data processing in managed runtimes. We do
so in the context of fundamental query processing
operations and introduce the notion of write-limited
algorithms that effectively minimize the I/O cost. We
give a high-level API that enables the system to
dynamically optimize the workflow of the algorithms;
or, alternatively, allows the developer to tune the write
profile of the algorithms. This dynamic adaptation fits
in well with the notion of just-in-time compilation.

2. Language-integrated query

Consider the architecture of a typical multi-tier
application. The developer primarily decides on ap-
plication logic: the data structures and algorithms to
implement the use-cases of the automated process.
The data persistence layers of the application are
typically offloaded to a relational database system.
Historically, the database system has been optimized
for secondary storage. It is accessed through its own
query language (typically SQL) through bindings from
the host programming language. The developer there-
fore has to operate over two different data models:
(a) the application data model, which captures the data
structures, algorithms, use-cases, and semantics of the
application; and (b) the persistent data model, which
captures the representation of data on secondary stor-
age. An intermediate layer bridges the two data models
and undertakes the cumbersome task of automating
as much as possible of the translation between the
two. The intermediate layer typically manifests as an
API between the application programming language
that accepts SQL strings as input; propagates them
to the relational database for processing; retrieves the



results; and pushes them back to the application for lo-
cal processing. This clear separation of responsibility,
functional as it may be, is potentially suboptimal in the
context of the contemporary computing environment.
Just-in-time query compilation into native code aims
to resolve this suboptimality.

We argue that in integrating querying between man-
aged runtimes and in-memory database systems the
best option is to blur the line between programming
language and database system, while, at the same time,
borrowing ideas from compiler technology. Our stance
is to internally bridge the two runtimes as much as
possible so host-language information is propagated
to the query executor; and database-friendly memory
layouts and algorithms are used to implement the
querying functionality [2], [3], [4], [6].

3. Data processing in persistent memory

When memory becomes persistent, the first step in
enabling data processing is ensuring that persistence
is readily accessible to the higher level programming
substrates. This means that the data structures cho-
sen by the programmer are persistent and recover-
able. We have designed and implemented a recovery
substrate for imperative languages termed REWIND,
which stands for REcovery Write-ahead system for In-
memory Non-volatile Data structures [1].

Our processing model is that data is on byte-
addressable persistent memory, accessible directly
from user code through CPU loads and stores. Tra-
ditionally, data updates are first performed in volatile
memory. It is thus possible to delay making log entries
persistent until the transaction commits or the data
updates are purged from main memory. In REWIND,
updates are done directly on persistent memory data:
the log entries must be made persistent immediately,
and ahead of the data updates. We achieve this through
enhanced versions of memory fences (i.e., barriers
that enforce ordering and persistence to preceding
instructions), cacheline flushes and non-temporal stores
(i.e., direct to persistent memory stores that bypass the
cache) with persistence guarantees.

Assuming strong software support for language-
integrated query and data collections, the next step
is dealing with the persistence aspects of the new
environment, namely data processing algorithms. We
have focussed on two types of data-centric opera-
tions: sorting and hash-based relational join processing.
Sorting is ubiquitous in a host of data processing
algorithms and solutions. Whereas hash-based rela-
tional join processing builds on the powerful technique
of splitting a dataset in disjoint partitions. Sorting

and hash partitioning are used in data mining, (e.g.,
producing association rules), machine learning (e.g.,
clustering), and graph management (e.g., nearest neigh-
bor search).

We have devised a family of algorithms that we
term write-limited that focus on mitigating the write
cost of persistent memory for sorting and hash-
partitioning [5]. The algorithms are based on a simple
observation. Consider the simple process of reading an
input dataset and then writing it—perhaps by applying
a total ordering on it, as is the case of sorting; or by
applying a hash function, as is the case for partitioning.
Assume now a write-to-read cost of λ, meaning that
writing is λ times more expensive than reading. Then
for the cost of writing the output, we can afford λ extra
reads. We therefore leverage this ratio to trade writes
for reads. The result is that we can achieve the same
I/O performance as well-known algorithms (e.g., exter-
nal merge-sort) but at a fraction of its write cost. Or,
alternatively, the developer can tune the write intensity
of the algorithms for a small hit on performance. With
the algorithms in place, we propose a flexible API that
records a blueprint of each algorithm’s computation
and enables the system to dynamically decide whether
to trade writes for reads. The key notion is that the
generation of new datasets (be they results of computa-
tion, or intermediate structures) is deferred by default.
The system keeps track of the accumulated savings and
the potential cost associated with generating a dataset.
It then performs a dynamic cost-benefit analysis to
decide if materializing the dataset would be more cost-
effective than deferring its materialization.

References

[1] A. Chatzistergiou, M. Cintra, and S. D. Viglas.
REWIND: Recovery write-ahead system for in-memory
non-volatile data-structures. PVLDB, 8(1), 2015.

[2] K. Krikellas, S. D. Viglas, and M. Cintra. Generating
code for holistic query evaluation. In ICDE, 2010.

[3] F. Nagel, G. Bierman, A. Dragojevic, and S. D. Viglas.
Self-managed collections: Off-heap memory manage-
ment for scalable query-dominated collections. In EDBT,
2017.

[4] F. Nagel, G. Bierman, and S. D. Viglas. Code generation
for efficient query processing in managed runtimes.
PVLDB, 7(12), 2014.

[5] S. D. Viglas. Write-limited sorts and joins for persistent
memory. PVLDB, 7(5), 2014.

[6] S. D. Viglas, G. M. Bierman, and F. Nagel. Processing
declarative queries through generating imperative code in
managed runtimes. IEEE Data Eng. Bull., 37(1), 2014.


