
Hardware Acceleration of Database Analytics
Evangelia Sitaridi

Amazon Web Services
e-mail: sitaridi@amazon.com

Advances in hardware strongly influence the database sys-
tem design. The flattening speed of CPU cores makes many-
core accelerators a vital alternative to explore for processing
the ever-increasing amounts of data. Accelerators typically
employ more and simpler cores with reduced instruction
control overhead. For example, in GPUs, multiple execution
units share the same instruction sequencing logic. As a result,
GPU processors do not face the power constraints limiting the
parallelism of CPUs.

Use of GPUs yields significant speed-ups for database
processing [1], [2]. The increased availability of GPUs in
the cloud opens new acceleration possibilities. To harness the
power of GPUs, we adapt and redesign data analytics operators
to exploit better their special memory and threading model.
Due to the increasing memory capacities and also the users’
need for fast interaction with data, as in the case of visual
analytics, we focus on in-memory data processing.

We identify two key applications for hardware acceleration
because of their impact on end-to-end system performance:
a) Substring matching and b) Lossless data compression. Our
techniques cover data preprocessing and algorithmic operator
optimization taking the GPU control flow into consideration.
We also discuss to what extent we can adapt our techniques
for CPUs with SIMD extensions.

Substring matching is a necessary tool to explore the
increasing volume of both unstructured and structured data,
such as social media posts and log files. In the context of
a database system, we are often interested only in the first
match. If some threads locate a match early on, they can stop
scanning the string. However, because of the warped execution
of GPUs, these threads will remain idle while the remaining
threads are still scanning their input string, so we suggest
methods to reduce GPU thread underutilization.

We study the cache memory efficiency of single and multi-
pattern string matching algorithms for conventional and novel
pivoted string layouts in the GPU memory [3]. Our pivoted
layout splits the input strings into similarly sized pieces and
interleaves the string pieces in the GPU main-memory. As
a result, threads of a warp processing contiguous strings will
coalesce their accesses to the GPU memory. However, depend-
ing on the chosen string matching algorithm, some threads
might fall behind and will end up accessing different string
pieces, increasing the cache footprint. We define this effect
as memory divergence. Because of the limited L2 capacity,
memory divergence degrades the string matching performance,
but we suggest how to eliminate memory divergence during
substring matching.

We benchmark GPU substring matching performance and
show 3× improved performance of GPUs against vectorized
multi-core CPU state-of-the-art libraries. While a single in-
struction is enough to answer most queries with substring
matching operators in CPUs with SIMD capabilities, more
advanced predicates such as regular expression matching can-
not be optimized as easily. Hence to offer regular expression
capabilities in the DBMS, we follow a different approach by
accessing the input strings non-sequentially and eliminate the
inherent need for branching, whether the string matches or
not a regular expression. Our evaluation on mainstream CPUs
and co-processors shows our approach to be up to 5× faster
compared to the scalar implementations.

In the second application, we parallelize Big Data decom-
pression algorithms in our compression framework Gompresso
[4]. Most research so far had focused on the speed of
compressing data as it is loaded, but decompression speed
can be more important for modern workloads – data is
compressed only once when loaded into the database but
repeatedly decompressed as it is read when executing an-
alytics or machine learning jobs. We propose and evaluate
two approaches to parallelize Inflate on GPUs efficiently.
The first technique exploits the SIMD-like execution model
of GPUs to coordinate the threads that are concurrently
decompressing a data block. The second approach avoids
data dependencies encountered during decompression by pro-
actively eliminating performance-limiting dependencies during
the compression phase. The resulting speed gain comes at the
price of a marginal loss of compression efficiency. Gompresso
is suitable for any massively parallel processor and is 2×
faster in a head-to-head comparison with several multi-core
CPU-based libraries while achieving a 17% energy saving with
comparable compression ratios.

Motivated by the increased availability of high-end GPUs
on the cloud we conclude outlining the challenges of manag-
ing heterogeneous hardware on the cloud and discuss future
research directions to address them.

REFERENCES

[1] T. Kaldewey, G. Lohman, R. Mueller, and P. Volk, “GPU join processing
revisited,” in DaMoN, 2012, pp. 55–62.

[2] H. Wu, G. F. Diamos, T. Sheard, M. Aref, S. Baxter, M. Garland, and
S. Yalamanchili, “Red fox: An execution environment for relational query
processing on GPUs,” in CGO, 2014.

[3] E. A. Sitaridi and K. A. Ross, “GPU-accelerated string matching for
database applications,” VLDB J., vol. 25, no. 5, pp. 719–740, 2016.

[4] E. A. Sitaridi, R. Müller, T. Kaldewey, G. M. Lohman, and K. A. Ross,
“Massively-parallel lossless data decompression,” in ICPP, 2016, pp.
242–247.


